43 research outputs found

    Fast Neutron Detectors Based On Micromegas Technology

    Get PDF
    After a short description of the Micromegas principle, a new concept of neutron detectors based on this technique is presented. The report is illustrated by an overall picture of the possible use of these detectors in different domain such as: nuclear physics, inertial fusion and industrial application. A particular description will be devoted to the compact detector named "PiccoloMicromegas". This detector, able to measure neutron flux in a broad range of energy of neutron (from thermal to several MeV), is developed for the measurements of neutrons flux in-core of the future generations of the nuclear reactors (fast and possibly Accelerator Driven System (ADS))

    CERN n_TOF facility: Performance report

    Get PDF
    An innovative neutron Time-of-Flight facility (n_TOF) has recently become operative at CERN. The high neutron flux is obtained by the spallation of 20 GeV/c protons onto a solid lead target. The proton beam is delivered by the Proton Synchrotron (PS) at CERN capable of providing up to four sharp bunches (RMS 6 ns) with an intensity of 7x10^12 protons per bunch within a 14.4s supercycle. The present report describes the outstanding characteristics of this facility: high neutron flux of 10^6 n/cm^2/7x10^12 p at 185 m, wide spectral function from 1 eV up to 250 MeV, low repetition rates, an excellent energy resolution of 2x10^-4 in the resonance region and low background conditions. These unique features open new possibilities for high precision neutron induced cross section measurements relevant to Nuclear Technology, Nuclear Astrophysics and fundamental Nuclear Physics

    New neutron detector based on Micromegas technology for ADS projects

    Get PDF
    A new neutron detector based on Micromegas technology has been developed for the measurement of the simulated neutron spectrum in the ADS project. After the presentation of simulated neutron spectra obtained in the interaction of 140 MeV protons with the spallation target inside the TRIGA core, a full description of the new detector configuration is given. The advantage of this detector compared to conventional neutron flux detectors and the results obtained with the first prototype at the CELINA 14 MeV neutron source facility at CEA-Cadarache are presented. The future developments of operational Piccolo-Micromegas for fast neutron reactors are also described

    Feasibility Study of a Neutron Time Of Flight Facility at the CERN-PS

    Get PDF
    This report summarises the feasibility study of a neutron time-of-flight facility at the CERN-PS as described in Refs. [1] and [2]. The idea is to extract at 24 GeV/cproton bunches (r.m.s. length ~7 ns) on to a target. The neutrons produced by spallation are directed to an experimental area located 230 m downstream throughout a vacuum pipe (diameter ~80 cm) making use of the existing TT2A tunnel about 7 m below the ISR tunne

    An improved limit on the axion-photon coupling from the CAST experiment

    Get PDF
    We have searched for solar axions or similar particles that couple to two photons by using the CERN Axion Solar Telescope (CAST) setup with improved conditions in all detectors. From the absence of excess X-rays when the magnet was pointing to the Sun, we set an upper limit on the axion-photon coupling of 8.8 x 10^{-11} GeV^{-1} at 95% CL for m_a <~ 0.02 eV. This result is the best laboratory limit over a broad range of axion masses and for m_a <~ 0.02 eV also supersedes the previous limit derived from energy-loss arguments on globular-cluster stars

    Neutron Capture Cross Sections of Zr and La: Probing Neutron Exposure and Neutron Flux in Red Giant Stars

    Get PDF
    corecore